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1. INTRODUCTION

Two principal methods have been developed for inference about extreme

quantiles or tails of distributions. The older is based on extreme value

distributions for subsample maxima. Statistical aspects of this have been

developed by Prescott and Walden (1980), Hooking (1984) and Smith (1985),

amongst others. The other method is based on the Generalised Pareto

distribution for exceedances over high thresholds. This was introduced by

Pickands (1975) and developed by Davison (1984), Smith (1984) and Hosking

and Wallis (1987), though there is a much larger literature of related

techniques in hydrology (NERC 1975).

A major issue with both of these methods is that certain limiting

distributions are used as statistical models. These limiting

distribu.ions are not exact in finite samples, and so there are two

sources of error. One source is the usual variance of estimators of the

model. The other source is a bias created by the fact that the assumed

model is not exact. This creates a bias versus variance conflict of the

kind familiar from density estimation, nonparametric regression, and other

statistical techniques involving smoothing.

Previous studies of this feature have been Davis and Resnick (1984)

and Smith (1987) on threshold methods and Cohen (1987, 1988) on classical

extreme value methods. Joe's (1987) results partly unify the two methods.

There is a long literature on estimating an index of regular variation, of

which Hall (1982) and Hall and Welsh (1984, 1985) have done most to make

the connection with smoothing problems. Recent references on this include

Cforgo, Horvath and Revesz (1987), Reiss (1987) and Bierlant and Teugels

(1997). Simulation results have been given by Boos (1984), Gomes (1986)

and Joe (1987).
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One reason why the literature on this topic has been so disjointed is

that, although there has been much literature on rates of convergence in

extreme value theory, no unified approach has emerged. In particular, the

three domains of attraction tend to be treated entirely separately, so

that the literature is three times as long as it should be. Recently,

however, Smith (1989) has proposed a new approach bringing together the

three domains of attraction. In the present paper, my aim is to show how

this new approach leads to explicit (approximate) expressions for the bias

and variance of estimators of extreme quantiles. The principal features

which distinguish this approach from its predecessors are that the three

domains of attraction are dealt with together, and that the method applies

to a very wide variety of estimators. To illustrate this, four particular

estimators are studied in detail. The results may therefore be used to

compare one estimation method with another, as well as providing a

theoretical resolution of such questions as choosing the best threshold.

They may also suggest automatic or adaptive techniques of, for example,

choosing the threshold, but I do not consider this aspect in any detail.

For this reason the results should be viewed as providing general

qualitative guidelines rather than determining a specific procedure for a

particular set of data.

The organisation of the paper is as follows. Section 2 reviews the

development of Smith (1988) on probabilistic approximations to extreme

value distributions. Sections 3-6 develop, in turn, bias and variance

approximation for four previously studied methods of estimating extreme

quant iles:

(i) estimation based on the exponentLal distribution for exceedances

over high thresholds,

(ii) estimation based on the Generalised Pareto distribution for
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exceedances,

(iii) estimation based on the Gumbel distribution, and

(iv estimation based on the Generalised Extreme Value distribution.

Section 7 concerns the application of these results to theoretical

comparisons among the procedures, in particular giving new results for the

comparison of (i) and (iii). Finally, in Section 8 we give numerical

results and comparisons with existing simulations.

2. EXTREME VALUE APPROXIMATIONS

The present section is a summary of the results of Smith (1988).

The starting point is the representation

rX dt~
-log F(x) - expH ,I X (X <x , (2.1)

XX

where (x*,x*) is the range of the distribution. This is for the classical

approach based on extreme value distributions; for the threshold approach

we replace -log 7(x) by 1-F(x) in (2.1). The two representations lead to

the same results except for a few distributions, (e.g. uniform,

exponential) for which the convergence is very rapid.

From (2.1) we deduce

-log F(u+x*(u)) exp (u) du

-log 7(u) 0 *(u+s(u) )

- 1+x0 (y)) 1(2.2)

for some y between u and u+xo(u), by Taylor expansion and the mean value

theorem. This assumes 1 continuously differentiable.
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Suppose now

lira 0'(x) - Yo (-- < Yo < O) (2.3)

X x

This is essentially von Mises' condition for the existence of a limiting

extreme value distribution. We now have three levels of approximation.

First approximation Replace 0'(y) in (2.2) by y0 . Now if an, bn are

defined such that -log F(bn) = n-1 . an = 0(bn), then replacing u by bn in

(2.2),

lir -n log F(anX+bn) - (I+yoX)
n-ko

and hence

lir Fn(anx4bn) - exp(-(l+yox)- /Yo (2.4)
n-)0

valid wherever 1 + yox ) 0. This is the generalised Extreme Value

distribution. In the special case yo- 0, the right hand side of (2.4)

reduces to exp(-e-x), commonly called the Gumbe distribution.

Secognd appoximation Replace '(y) in (2.2) by ('(u). Then, defining an

and bn as above, and y. - 40(bn), we have the aproximation

,n( anx+bn ) Z exp{-( l'+ynx) 1 1  (2.5)

which in general improves on (2.4). This is the Penultimate

approximation. In the case yo- 0, use of the penultimate approximation

generally improves the rate of convergence (Cohen 1982, Gomes 1984). This

is not so when yos 0, but even here the quality of approximation for

moderate n is generally improved by the penultimate approxination (Gomes

and Pestana 1986, Smith 1998).
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Third apDroximation The approximation may be further improved by

expanding 0'. However, some care is needed to do this in a sufficiently

general way. Simple Taylor expansion does not suffice. Smith (1988)

proceeded under the assumption

4' ( u) (4' ( u+w4 u) )-0' ( u))}
Jim c (2.6)

utx* g(u)hp( '+w' ( u ) )

for each w such that I + ye > 0. Here p and c are real numbers, g is a

non-negative function, and h is defined by

xP-I.
, P O,

x P

h (x) - vP-' dv - (2.7)

logJ x , p-O .

This assumption covers most common distributions. For instance:

(i) Assume -log F(x) - Cx-O(I+Dx--+o(x-O)) as x*w. This includes

such cases as Pareto, Cauchy, t and P distributions. In this case yo - ,

p - _, g(u) - u- , c -D 2 a-3 (03-1).

(ii) Assume x* < w and

-log P(x) - C(x*-x)a (1+D(x*-x)13 + o((x*-X)1)}

as x t x*. Then yo - -el, p - 13, g(u) = (x*-u)13, c - -DJ32 a-(3+1).

This includes most distributions in the Weibull domain of attraction.

(iii) Assume yo- 0 under what Cohen (1982) called class N, which includes

most distributions in the Gumbel domain of attraction. En this case it is

valid to make a Taylor expansion of 0. Equation (2.6) holds with

arbitrary p, g(u) - O(u) O"(u)1 , c ±t.. This case covers the normal,

lognormal and gamma distributions, amongst many others.
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In all three cases, additional differentiability ansumptions areo

involved, made precise in Smith (1988).

Substituting from (2.6) into (2.2), defining an, bn , Yn as before and

rn - g(bn), routine but tedious manipulations lead to

Fn(anx+bn) Z exp[-(i+xyn ) - l / y n (l+CrnHp(xYn) } ] (2.8)

whenever I +Xy n ) 0, where

ho( L+xy )+ph_ 1( 1+xy)-(p+1 ) log( 1+x-y)
p(p+3 )Y3, x-o

HP(xV) - (2.9)

0 , 1+xY0 .

The rates of convergence for the three approximations are O(y n - yo )

for (2.4), O(rn) for (2.5) and O(rn) for (2.8). Under mild additional

assumptions, these rates hold pointwise, uniformly over all x, in total

variation norm, and finally in Hellinger distance. The Hellinger distance

between two distributions with densities f and g is defined by

2 A 2 J-
(fg) j (fZ(x) - gZ(x)) dx]*

The use of Hellinger distance in the context of extreme value

approximations was first proposed by Reius (1984) and, as will be seen in

later sections, greatly simplifies the proofs of statistical results.

In the case of (2.8), there is a small problem in that the right hand

side may not be a distribution function. In this case, however, a slight

modification does converge in Hellinger distance at rate o(rn ). The

principal additional assumption for this is that yo 3 -1/2, an assumption

which is natural in view of the regularity conditions for maximum
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likelihood estimation (Smith 1985).

For the threshold approach, -log F is replaced by 1-F in (2.1) and

(2.2). We then have three approximations for (l-F(u+x(u))/(1-F(u)):

rirst approximation (1+Yox) , for x>O, l+yox0 O, -0wy 0 m. This is

the Generalised Paxeto tail.

tcQnd approximation (l+yux) , where Yu - 0(u).

Third approximation (1+yux) - 1/ y u (I + crHp(X, yu)) (2.10)

where r u - g(u).

The errors of these approximations are, respectively, O( yu-y o ),

O(ru), o(ru), and these are valid for Heinger distance as before.K

3. FSTIMATION BASED ON AN EXPONENTIAL TAIL

In this section we consider the estimation of an extreme quantile

under the assumption that the conditional distribution of exceedances over

a high threshold is exponential. By the previous section, this is the

same as a Generalised Pareto approximation with y 0. The method is

effectively the same as that of Weissman (1978).

The general framework, here and throughout the rest of the paper, is

that we have N independent observations from a common unknown distribution

function F, and we are interested in solving 1-F(q)-p for given small p.

Fix a high threshold u, let k denote the (random) number of exceedances of
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u, and let 1, ....Yk denote the excesses over u. Given k, we have

Y0 .... .Yk independent with common distribution function

F(u+y)-F(u) I*- exp y ( O 3.1)
l-F(U I- )(U

under the First Approximation. Here we assume YO0- 0.

The method that then suggests itself is to estimate e - 1-F(u) by k/N

and then fit an exponential distribution to Y1 ... 'Yk estimating 0 by the

sample mean Y. These approximations lead to the estimator

q - u + Y logp] (3.2)

assuming q > u. Except for changes in notation, this is identical to

equation (4.3) in Weissman (1978), except that Weissman took k rather than

u as predetermined.

An approximation for the variance of q may be made by the usual delta

method, assuming the exponential distribution of the excesses and an

approximate Poisson distribution for k. This leads to

2  k 2 22
vat(q) Z - log2(--) + Y - (1+72 )  (3.3)

k NP k me

where Y) - log(e/p).

The next step is to approximate the bias of q due to misspecification

of the exponential distribution. In view of the results described in

Section 2, the obvious thing to do is to use the next order of

approximation, i.e. the Generalised Pareto distribution, in place of

(3.1). In other words, we replace the right hand side of (3.1) by



10

i - + -1/y (3.4)

where y - yu - i'(u). Now, the mean of a Generalised Pareto distribution

with parameters y and 0 is (l-y)-1o, assuming ycl. Moreover, under the

Generalised Pareto model the true quantile would be u + 0y 1 (e -l).

Hence

E(-q) Y= + o(y)I

- 4i7(l-rL/2 + o(l)) . (3.5)

Combining (3.3) and (3.5) leads to an approximation for mean squared error

^ 2 r111 + 2KSE(q) - 10(u) me 2-n -2 (3.6)

So far, this development has been heuristic. I shall now outline a

framework within which these formulae appear an rigorous asymptotic

results. The intention of this is to clarify the status of the preceding

approximations, as well as indicating a starting point for possible

further theoretical development.

Suppose N - OD, u - UN - x*, 0 - 0
N 4 0, NN 4 m, f =l N 4 o" where

0 ' <. Lot 4 - 0(um), ym - 4'(uN), pN - Bexp(-YI). Suppose also

YN(NN)z 4 8 (3.7)

where 8 is finite (possibly 0). Define

N " (Z + rW 2 ) " (3e

4W - me,(3.8)NON

Consider the folowing hypothetical model. For each N, kN has a binomial

distribution with parameters N, N and, given kN = k, the excesses

... are independent Generalised Pareto with parameters 4N' YN"
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4. ESTIMATION BASED ON A GENERALISED PARETO TAIL

The method of Section 3 will now be extended to one in which the

exponeatial distribution (3.1) is replaced by the Generalised Pareto

distribution for the purpose of constructing the estimator. This was the

method studied in detail by Smith (1987), but the new probabilistic

approximations of Section 2 allow the results to be developed in a much

more coherent fashion.

Suppose, then, that (3.4) is used in place of the approximation in

(3.1), and that estimators y, 0 are obtained for the parameters y, 0.

Throughout this paper it will be assumed that maximum likelihood is used

as the method of estimation, though there is nothing to stop similar

calculations being made for other estimators, such as the Probability

Weighted Moments estimators of Hosking and Wallis (1987). As before, the

exceedance probability B is estimated by k/N, and this leads to a quantile

estimate

u =, + *^Y-'-(ex p(V ) - 1) where n = log . (4.1)

In this section yo (from (2.3)) is arbitrary, but we assume yo -1/2 for

regularity.

Applying the delta method, with an approximate Poisson distribution

for k and the covariance matrix of (;, *) derived from the Fisher

information matrix (Smith 1987), we obtain the approximation

- 2 2 2 *2 e2 y"l
var(q) P (2 -D - 20DID 2 + (1+y)D 2) + (4.2)Ne NB

where V = Vu V *'(u), * - 4i(u), Y - log(o/p) and

84 V , O.y. V, eV?.leq _eV'L.1 aq (Yn ~ ~ 43D2 rf YrL(4.3)
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Define qN by (3.2) with suffices N added where appropriate. Also let

denote the exact quantile under the hypothetical model, i.e.

- u. + %(exp(YN7nN) - ')/Y.

For this model it is easy to make all the approximations rigorous and it

follows that

* [1 - jr2 NOON (qN - qN) -4 x) 4 0 x - 8%[l - 501+ r;(3.9)

where 0 is the standard normal distribution function. Here * denotes the

probability measure of the hypothetical model.

The hypothetical model differs from the true model only in the

distribution of excesses over the threshold. By the results of Section 2,

the Hellinger distance between the true and Generalised Pareto

distributions is of o(yN). Moreover, the Hellinger distance between two

product measures grows in proportion to the square root of the number of

components (Reiss 1984), so the Bellinger distance between P and the true

1

probability measure, N say, 1 of o(kNz yN ) . By (3.7), this tends to 0.

Since Hellinger distance dominates total variance distance, it follows

that P;(A.N) - PN(AN) + 0 for any sequence of events (AN). Hence (3.9)

remains true with PN replacing P* and the true quantile % replacing q.

What this says, in effect, is that probability calculations based on

(3.3), (3.5) and the normal distribution, are asymptotically correct.

This avoids the direct question of whether (3.6) itself is valid as an

asymptotic approximation, something which involves additional

moment-convergence technicalities of the kind developed in Section 2.5 of

Goldie and Smith (1997).
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To approximate the bias of q, the method is to use the higher -order

approximation (2.10). Let us rewrite this in the form

F(u+y) - F(u) 1 1- + y 1/yI + EH,4 , (4.4)
1-F( U)

where e e Eu - cg(u), and take the right hand side of (4.4) to be exact

over the range on which it is a valid distribution function.

The bias of * and y are calculated by the method given in Section 2

of Smith (1997), which leads to the approximation

i N X 80 (4.5)

IY Ylog g(Y)

where g is the Generalised Pareto density, N the Fisher information

matrix, and the expected values are calculated under the model (4.4). Now

N (1+Y) [21 -0 +]

log g(y) 1 2r ryr'

- o+g g(y) I + 11 1 + + (4.6

The range of y is O<yco if yPO, O<y<-y -1 if yO.

Suppose Y has distribution function (4.4). Define U to be

(1+yy/*)-/Y. Now

1
Ff~~y/*)rl- Et[f zr1 - 1+yr f u-Yr-1 PtLJ~ul du

0

Writing out the distribution function of U and using the identity
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Ju-)r hp( u)' )du - -_ _ _

0 (1-yr-Yp )(1-yr)

we deduce

I I T-, +(l-Yr-YP )(1-yr4.y)(1-yr 

The conditions required for this are yrci, yr+ypci. Taking the special

cases r-1, r-1 and the limit r-)O, we deduce

Jelog g(Y) 6

2folog g(Y) ~ e( 3+2y-2yp)

Hence from (4.5) we have

E(Y -Y) ('+r-vP)( 1-YP) (4.7)

Using (4.7) with a Taylor expansion in (4.1), we have

emi. (2+y-ypo )D-tpD1
Y (JL+y-YP)(i-YP)

Finally, for the true quantile under (4.4) we have

q-u+.---- + .. Y7)s [H , + 0(e)

and hence

Eq- q) 6[2 i2; - eyrIH,

e, B (Y,p,ri) (4.8)

where
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B(Y,p,n) - ( 2+v-yp) r~e 2 - er-11 en1
(l+y-yp)(1-Yp) ( ,-

y- [ , (4.9)

Combining (4.2) and (4.8) one can obtain an approximation for the mean

squared error. This can be used as a basis for deciding such questions

as the optimal choice of threshold and whether, in the case of y0 =O, the

method of this section is preferable to the method of Section 2. Such

questions are discussed at length in Smith (1987).

This may all be made rigorous by a similar process to that in section

3. Making the same definitions as there, plus a. - cg(u.), let q denote

the approximation to the variance of q0 obtained from (4.2) and (4.3).

In place of (3.7) assume

-1

lim oj, em B(YNP'1N) 8 (4.10)
N-)w

where 8 is finite. Since VN and N are converging to constants, this
.1

limit will exist whenever k.2 eN converges. Consider a hypothetical model

in which the approximation used in (4.4) is taken to be exact. Then all

the preceding steps can be deduced by standard asymptotic arguments. The

Hellinger distance between the hypothetical and true models tends to 0,

leading to

" PUf* (qM - qN) 4 x1 4 (x-8) (4.11)

where PN is the true probability model. As before, this has the

interpretation that probability calculations made on the basis of (4.2),

(4.8) and the normal distribution, are asymptotically valid.
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5. ESTIMATION BASED ON THE GUMBEL DISTRIBUTION

We now consider a classical extreme value procedure in which the

sample of size N is divided into roughly k blocks of size n, and one of

the classical extreme value distributions fitted to the block maxima. In

this section we assume the Gumbel distribution

G(y) - exp[-exp(-(y- )/a)], -ic < y ' m . (5.1)

This model only makes sense if it is the correct limiting distribution,

i.e. if yo0 ), and we assume that throughout this section.

If (5.1) is valid for G -F n and we are interested in the p-upper

quantile of F, then

q IL - olog [-log((1-p)n)] . (5.2)

In limits as n-w, p*O, np- Np/k 4 e- 1, (5.2) simplifies to q - j+of,

which suggests the estimator

q L+ o ,(5.3)

where 1,, o are the maximum likelihood estimates based on a Gumbel

distribution for block maxima.

In the following r denotes the gamma function, P - r'/F the digama

function and C the Riemann zeta function. For -4'(1) - 0.5772156649 we

write 3 (Euler's constant), in place of the more usual y, to avoid

confusion with the shape parameter. Also %'(1) - C(2) - if2 /6, 4"(1) -

-2C(3) - -2.404113606, -"'(1) - 6C(4) - vn4/15 (Abramowitz and Stegun,

1964). The inverse Fisher information matrix is

, mm I ImIiI
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2

6- 2 -((5.4)

1-Y 1

(Gumbel 1958), and hence

var(q) k I + ; ( 1-y+)

Cr2

=- (1.10866 + 0.51404n + 0.60793,n2 ) (5.5)
k

To study the bias of q, we embed the Gumbel distribution in the

Generalised Extreme Value family

-Xy) - ex1fj-t + Y(ys)}] (5.6)

where, for the approximation to pn, we take A - b n o a - an, y - yn as in

Section 2. The method is similar to (4.5), in that the expected values of

the derivatives of the Gumbel log likelihood, with respect to 1A and a, are

evaluated under (5.6 ).

If Y has distribution function (5.6) and density g(y) - g(y;g,o,y),

then we may write

a
Y - ;L + - (e"Z-1) - ) + oZ + --- +

Y 2

where Z has a standard (;s - 0, a 1.) Gumbel distribution. Writing

a I [r l-e - Z  2e- ___2

(1. (log g(Ys,a',0)) - - 1-exp[- -IF - i-e 2 + + I(2
OAs a I t ai a 2

(log g(TipL,o,o)) - I + I- exp-a" a a r

- (- + Z - Ze - Z + (Z 2 - z~eZ + Z3 e - Z) + 0(y 2 ))
2
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and using the formula

E[Zre- sz1 - (_-)r r(r) (1+s) , (5.7)

we find, to first order in y,

lo a 0 (Y;IA~ao) L r-(2) = ;2

- 0.41184 - ,

E log q(YIMLa0O)} r"i. l(2) - r"'(2)}

-' {2y pi 2 -[- 3](l.-)I) - (i--Y)}

- 0.33248 -
Y

a

A calculation similar to (4.5) then leads to

E y 0.542055.8)

;"- } 0.30798

As an aside, it should be pointed out that (5.8) is identical with Theorem

1 of Cohen (1987) when the mathematical technicalities of the latter are

disregarded.

Application to (5.3), and comparison with the true quantile under the

Generalised Extreme model, leads to the approximation

E(q - q) Z y ar (0.54205 + 0.30798ri - 0.5n2) . (5.9)

As in previous sections, these calculations may be made rigorous within a

suitable asymptotic framework.
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6. ESTIMATION BASED ON THE GENERALISED EXTREME VALUE

DISTRIBUTION

The estimator is developed in the same way as in Section 5, but the

Generalised Extreme Value distribution (5.6) is used in place of the

Gumbel distribution (5.1). tt is not necessary to assume yo-O, but we do

take yo > --. The estimator is now taken to be

q ~+ av ̂- (exp( Y^ T-1) (6.1)

with maximum likelihood estimates so,y, fitted to the k block maxima.

The Fisher information matrix has been given by Prescott and Walden

(1980) in the form

02 a a

N- (6.2)

m23 m
a a3

r( 2+y)-P
where mi 1 - P, 1-12

Y

M13 w-- iQ , ' M22 ;2 (1-2r(2+y)+P)

1 [ (i-r(2+y)) Q 1
WI23 "- ; Y1 V V

11 2 2

M3 "(34 + +2

P - (1+r)2 .(1+2y)

Q - r(2+y) fK+y) + -+
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Here r and * are the gamma and digamma functions and is Euler's

constant. Hence we deduce

a-
var(q) N 2 (6.3)

where 1o has entries (mij) (i.e. (6.2) with a-1), (D1 ,D2 ,D3 ) and

aq Oq e "-I
D 1  . -- . I, D2  a- = e -7 -

(6.4)

D3 M 1 aq = i e 7"lt ey e -1

aay, y "

The values of a and y are here taken to be those appropriate to the

approximation of Fn, i.e. a - an , y - yn in the notation of Section 2.

The bias of q will again be computed by embedding the Generalised

Extreme Value distribution in a larger family, here (2.8). More

precisely, consider the extended family

- expl- + ,(Y-U) "1/ I + H 66l5)

with five parameters jLa,y,p,e. This is used as an approximation to

Fn(y), with p - bn , a - an, y = yn" e - cg(bn). As in Section 4, it

suffices to define (6.5) over the range within which it is a valid

distribution function, setting G(y) to be 0 or I outside this range.

By analogy with (4.5), the biases of the parameter estimates are

given by

alog g(Y)

- I aaxjg-K - ,M E(6.6)

YX- Y alogq (Y)

By)
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where 4 is the Fisher information (6.2), g is the Goneralis.d Fxtreme

Value density and Y is distributed according to (6.5). The main task is

to evaluate these expectations in the limit as e 4 0.

First, note that

alog g(y) +Y ) 1(y-)

alog g(y) 1 rr--L 1 /y I. al g(y)

- I+ .-- - - I +
8o 0) LG~ J

alog g(y) I 1 Y( 1,}
ay Y a

-; t + -- I log t a. (6.7)

Suppose a random variable Y has distribution function (6.5).

Inverting (6.5), we may represent Y in the form

I + 1 + Y dE [.-- , -]+ o( 2 )J

where Z has a reduced Gumbel distribution. Substituting in (6.7) and

discarding terms of 0(e2 ), we deduce

slog g(Y) (i+y)e - z -e-(I+y)Z
ag

ye-Vz -e-('+Y)z,

logg(Y) +Llog g(Y) _ ) e- z H

Slog g(Y) + log g(Y) I ( eZ) +

,, 8,).' -(,Q ti + Ze-z -e-Z] (6.,)aloY gac) Y - -(-Yz - )
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where we have written aPin place of HP~~i~v

From the aefinitioi of Hpin (2.9) and using (5.7), we deduce

Efzr e-Oz R[eyZ-L v] -1 (_,..)r r(l+s-py)

- r(r) (1+8) + P2($~r) (li-s)-r(r) (1+8+y)) + p(p+l)y r(r+1)(I+s)I

(6.9)

When e-0, all the expressions in (6.8) of course have expectation 0,

as is readily verified directly from (5.7). We therefore evaluate

expectations of the 0(a) terms in (6.8), using (6.9), to deduce, as e 4 0,

Efelo 9(y - - P(Y'p)

E fao t() Q(YvP) -1 -('~

-[lggY +t(yIp) Q(v'p) +P(Y#P)l (6.10)

where

P(Y'p) - + (iy~~~-p -Fiy
P2(p+t)Y,3 [(YP(+-v)-r+y

+ p 2 (r(±.+y)-(1L+y)r(xL+2y)) + p(p...)(r(iL+y)+r*cl+y))I

Q(v'P) - IZplv [r(2-yp)-1 + p 2 (1.r(2+y)) + p(p+I)y(1-'v)]

R(y,p) - [IPI yp(r( 1-yp) + pr(l+-y)-p--) - r'(2-py)

_ Z(p 44)y4V

._ _2 I -;2+ 1-v -- I (2+y))- piy--2v 2 ).(.1
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We have used the relations r"(1) r-, '(2) = i-y, f"(2) /6 - 2y+ 2 .

Equations (6.6) and (6.10) may be combined into

y-yCr

where
P(YP)

.- j. -P(y,P)

~(~) - Q , p ) - -Q(yp) P(Y=p)
JVl', NO

R(y,p) -Q('P) A-

Y Y

Mo being as in (6.3).

We now apply these results to calculate the bias in q. From (6.1)

and (6.12) we deduce

E(q) gs + + --a §(y,p) (6.13)

where Q is as in (6.4). We also have, from the inverse of (6.5), that the

true quantile under (6.5) satisfies

•eY-I e _I
ea eeV Hp[ e , (6.14)

Combining (6.13) and (6.14) we have

Elj-q) - w OF 1(yP) - en' Rp. (6.15)

These aproximations may again be made rigorous using arguments similar to

those in previous sections.
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7. COMPARISONS OF THE METHODS

The results of the preceding four sections may be applied to a number

of questions concerning comparisons among the methods. Among these

questions are s -

1. Choice of threshold (threshold methods) or of block size

(classical methods).

2. Choice between two-parameter and three-parameter approximations,

assuming yo-O.

3. Choice between the threshold and classical approaches.

In each case, a meaningful comparison must Lake the bias as well

as the variance term into account, as otherwise it would be possible to

achieve very high accuracy by taking the threshold very low or the block

size very small.

Problem I has been considered by Pickands (1975), Hall and Welsh

(1985) and Smith (1987) in the threshold case, Cohen (1987, 1988) in the

classical case. Problem 2 was also studied by Smith (1987) in the

threshold case, Cohen (1988) in the classical case. Problem 3 has been

considered by Cunnane (1973) and Rosbjerg (1985) in the hydrology

literature, and in a preprint by J. Husler and J. Tiago de Oliveira, but

these authors have considered only the variance of the estimators and have

neglected the bias.

To illustrate how these ideas may be developed, I consider here the

comparison of the methods of Section 3 and 5, assuming yo- 0.

Consider first the threshold model with exponential exceedances.

Assume the total sample size N and the desired tail probability p are
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fixed. Then equation (3.6) may be written in the form

MSE(q) k 2[4n (7.1)

wbnre k - NO denotes the expected number of exceedances of the threshold u

and 0 - 0(u), V - '(u), 7) = -iog(Np/k).

Similarly, under the Gumbel model of Section 5, equations (5.5) and

(5.9) lead to

. 02 [1.10866 + 0.51404n + 0.60793-2

+ Y2(0.54205 + 0.30798-n - 0.5n2)2] (7.2)

where 0 - 0(bn), y - 0'(bn), n - -log(Np/k), n - N/k and bn satisfies

-log F(bn) - n-1 .

If k is fixed then u in (7.1) and b. in (7.2) are (almost) the same;

hence so are 0 and y in the two equations. Moreover, over the range of

values of k which are of interest, both 0 and y vary only slightly, so we

may effectively treat these as constants. (Precise justification of this

last statement will not be made, but the key point is that

0(u+yC(u))/O(u)+1, *'(u+y0(u)/0'(u)+i, as u~x* for fixed y. These

properties follow from the assumptions made in Section 2).

It follows, then, that we may compare the two procedures by directly

comparing the expressions (7.1) and (7.2), treating k as a free parameter.

The comparison depends on N and p only through the product Np. As an

example, Figure i shows the two mean squared errors plotted against k for

Np-1, y-O.1, 0-1. The minimum values are 0.494 for the Gumbel procedure

at k-23, 0.462 for the threshold procedure at k-42. Thus the optimal k is
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almost twice as large for the threshold procedure as for the Gumbel

procedure, and the ratio of minimum mean squared errors is 1.07 in favour

of the threshold procedure. In comparative terms, very similar results

were obtained for other values of Np and y which were tried.

In the papers cited earlier, the comparison between the two

procedures was based on variance alone, under the assumption that the sane

k is used in each. There is no reason, however, to make such an

assumption. The present study thus favours the threshold method so long

as k is chosen optimally (or nearly optimally), though in view of the

asymptotic nature of the result and the fairly small differences between

the procedures it would be wrong to read too much into this conclusion.
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s. COMPUTATIONAL RESULTS.

This section describes numerical comparisons of all four procedures

for a number of parent distributions.

Simulation studies of similar questions have previously been

published by Boos (1984), Gomes (1986) and Joe (1987). Boos compared the

exponential method of estimating extreme quantiles with the nonparametric

quantile estimates, for a variety of values of k. Gomes made a comparison

of the Gumbel and Generalised Extreme Value distributions for estimating

extreme quantiles in the classical approach to extreme value theory, when

the limiting (ultimate) approximation is Gumbel. Her results generally

support the use of the Generalised Extreme Value distribution, especially

for estimating the more extreme quantiles. Joe made a number of

comparisons of bias and mean square error for all four procedures studied

in this paper. Joe concluded that, in general, estimation based on the

Generalised Pareto distribution is slightly superior to that based on the

Generalised Extreme Value distribution, but that, in all cases it is

important not to take k too large.

Some attempt that has been made to roproduc(e the: ronults of these

three papers using the approximations of Sections 3-6. My approximations

support their broad conclusions but do not reproduce their detailed

numerical results. This is probably because the sample sizes are too

small for the asymptotic results to be reasonable. For instance, Joe

assumed total sample size N-600 of which a typical run was based on k-30

blocks of size n-20. In the following discussion I assume a sample size

U-100O0. Although this is much larger than the sample sizes in the earlier

studies it is not at all unreasonable for many applications in the

hydrology/mctrology areas.
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Figure 2 plots the root mean squa-red error for the estimator of the

2/10000-quantile, (i.e. p-10-4), based on N-1OO00 observations, calculated

using the approximations in Sections 3-6, for various parent distributions

and across a wide range of k. Corresponding calculations were also made

for other quantiles with generally similar results.

One property that is sometimes observed with these calculations is a

"bias-cancellation" phenomenon - the bias becomes zero owing to a

cancellation of the terms contributing to it. This is observed in

Fig.2(a) which is based on the standard normal distribution for the

observations from which the sample is drawn. The bias for the Generalised

Pareto method is zero near k-2100 and that for the Generalised Extreme

Value method near k-2300. This results in an unusual shape of the two

curves, with the apparently optimal k very large. From a practical point

of view it would be unwise to rely on being able to exploit the bias

cancellation and the most significant feature of Fig.2(a) is that the

Generalised Pareto method does better than the Generalised Extreme Value

method for most of the range of k. The other two methods are not even

shown because their mean squared errors are far larger. In contrast,

Fig.2(b) shows the four plots for the lognormal distribution (a-1). In

this case the bias comparisons again favour the Generalised

Pareto/Generalised Extreme Value procedures, but the variances are much

lower for the exponential/Gumbel procedures, with the exponential coming

off best. Fig.2(c) shows a gamma distribution (scale parameter 1, shape

parameter 5) reflected about the origin - this comparison would also be

valid for inference about the lower tail when the parent distribution is a

three-parameter gamna. The exponential and Gumbel procedures are not

applicable here because the reflected gamma distribution is not in the

Gumbel domain of attraction. In this case the Generalised Pareto method
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does better for large k, the comparison being rather similar to Fig.1. A

comparison for the upper tail of a t 4 . distribution (Fig.2(d)) leads to

rather similar conclusions except for a rather drastic bias cancellation

effect at the right hand side. Finally, the Weibull distribution function

1 - exp(-(x/13)) was tried, with a-0.5, p-0.1 in Fig.2(e), a-1.5, 1-1 in

Fig.2(f). Fig.2(e) shows the Gumbel and exponential procedures dominant,

largely because the variances again dominate the comparison. In contrast,

Fig.2(f) shows the Generalised Pareto/Generalised Extreme Value procedures

dominant. In comparing these two Weibull distributions, it may well be

important that the a-0.5 case is heavier-tailed than an exponential

distribution and in this respect comparable with the lognormal, while the

a-1.5 case is lighter-tailed than the exponential distribution and

therefore comparable with the normal. The classification of distributions

* into lighter than exponential, approximately exponential and heavier than

exponential tails was also made by Boos (1984), who referred to earlier

unpublished work by Breiman, Stone and Gins.

Summarising the results so far, the following general observations

may be made:

1. In cases in the domain of attraction of a Gumbel distribution the

Generalised Pareto/Generalised Extreme Value procedures perform better

than the exponential/Gumbel procedures when the tail is lighter than

exponential, but the comparison appears to be reversed when the tail is

heavier than exponential. Also in the "heavier than exponential" case the

optimal k is much smaller.

2. In all cases the comparison between the threshold and

corresponding classical procedure appears to be similar to Fig.1, i.e. the
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classical procedure does better at small k but the threshold procedure

achieves its minimum mean squared error at a larger value of k and is then

superior. The exceptions to this are when bias cancellation is observed.

Gomes (1986) compared the Gumbel and Generalised Extreme Value

methods by simulation, remarking that the Generalised Extreme Value method

seems to do better as higher quantiles are estimated. However, both the

distributions she used for simulation (normal, and a modified form of

Weibull with a-4) are lighter-tailed than exponential so the present study

suggests her simulations were not extensive enough to support those

conclusions. Boos (1984) also remarked on the difficulties of the

heavier-than-exponential case, even suggesting that simple nonparametric

estimators might do better in such cases. Another simulation study,

though not directly treating the bias vs. variance aspect of the problem,

led Hosking, Wallis and Wood (1985) to conclude that maximum likelihood

estimation has poor sampling properties in the heavy-tailed (y3O) case,

and to propose the method of probability weighted moments as an

alternative. All these studies point to the need for a more detailed

theoretical study of the heavy-tailed case, including perhaps the

development of alternative estimators with smaller mean squared errors

than maximum likelihood.

So far no indication has been given of the accuracy of the proposed

approximations to the bias. A theoretical way to assess this is as

follows. Suppose we have a very large sample from pn for a given finite

n, or from a threshold distribution for fixed threshold. The parameters

of the fitted model (respectively, Generalised Extreme or Generalised

Pareto) will converge to those values which maximise the expected log

likelihood of the fitted model under the true distribution. These
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limiting parameters may be calculated by a combination of numerical

integration and numerical optimisation, and result in exact expressions

for the bias - "exact" in the sense that they do not rely on any

approximations for the distribution function. (They are still only

approximations for finite k.) In Table 1 this is calculated for n-l00 or

500 and the distributions used in Figure 2. Three approximations to y are

shown: the crude approximation 4'0(u) of Section 2, the "bias corrected"

approximation obtained from (4.7) or (6.12) and the "exact" value given by

the procedure just described. Also shown are biases for two quantile

estimates where, for N-10000, q. corresponds to p-.0001 (as in Figure 2)

and q2 to p-.0005. These are expressed as a percentage of the absolute

value of the quantity being estimated. These results show that, although

in most cases our approximations are the right order of magnitude, one

would have to go to even larger samples before they were really accurate.

In one sense this does not matter, because in practice we would not have

the information to obtain the exact biases anyway, so a more important

feature of our results is that they lead to the right lualitative

conclusions.
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9. SUMMARY AND CONCLUSIONS

The main purpose of the paper has been to obtain approximate

expressions for the bias and variance of four established extreme-value

procedures, and to use these to study the optimal value of k and to

compare the four procedures in terms of mean squared error. The studies

have in general supported the qualitative conclusions of simulation

studies by other authors and have also suggested some new aspects. In

particular, threshold procedures tend to require a larger optimal k than

classical procedures, and then to achieve a lower mean squared error.

Concerning the comparison between exponential/Gumbel procedures on the one

hand, and Generalised Pareto/ Generalised Extreme Value procedures on the

other, in many cases the study supports the latter, but not in

heavy-tailed cases in the Gumbel domain of attraction (lognormal, Weibull

with at 1).

Important open questions are:

1. Data-based (adaptive) estimation of k. This may be best achieved by

trying to estimate the bias, and then choosing k to minimise the estimated

mean squared error. It seems to me that "general" methods of bias

estimation, such as the jackknife and bootstrap, are unlikely to work in

their usual form, in view of the rather specialised nature of the bias

problem, but some modifications to take account of this may be possible.

An asymptotically efficient, but highly artificial, proposal along these

lines was made by Hall and Welsh (1985), in a more restricted setting than

the one considered here. The Hall-Welsh result does serve to indicate

what is theoretically possible.

2. Are there better estimation procedures than maximum likelihood? The

well-known asymptotic optimality of maximum likelihood may not apply when
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bias is taken into account, and indeed Csorgo, Deheuvels and Mason (1995)

have indicated one way to improve it, though again in the more restricted

setting of estimating the Pareto index. However, there may be simpler

estimates than theirs which would have better properties than maximum

likelihood, the probability-weighted moments estimator being presumably a

candidate. Theoretical investigation of other estimators is possible

along the same lines as developed for maximum likelihood estimators in

this paper.

3. Another possibility is to expand the class of model distributions to

something wider than the Generalised Extreme Value of Generalised Pareto

Classes. There is considerable discussion along these lines in parts of

the hydrology literature, the theoretical status of which is ill-defined,

but there are obvious possibilities such as combining extreme value

distributions with a family of transformations. Since this would

inevitably involve increasing the variance of the estimators (because of

the extra parameters), the only theoretical way to assess the idea would

be in terms of some form of trade-off between bias and variance.
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TABLE 1 : EXACT BIAS CALCULATIONS

PERCENT PERCENT
PARENT METHOD N ESTIMATED y BIAS IN qI BIAS IN q2
DIST.

CRUDE BC EXACT APPROX EXACT APPROX EXACT

Normal GEV 100 -.127 -.095 -.101 - .17 - .16 .40 .26

Normal GPD 100 -.127 -.074 -.089 .16 .06 .31 .20

Lognormal GEV 100 .248 .224 .239 3.15 2.11 - .60 .03
(1)

Lognormal GPD 100 .248 .200 .222 .56 .43 -1.10 -.31
(1)

Refl.GamMa GEV 100 -.315 -.275 -.266 1.21 3.93 1.60 2.38

(5)
Refl.GaNma GPD 100 -.315 -.267 -.258 1.21 2.06 .85 1.09

(5)
t4 GEV 100 .196 .212 .211 -2.08 -1.87 - .03 -.09

t4  GPD 100 .196 .231 .225 - .46 - .50 .27 .18

Weibull 0EV 500 .161 .129 .145 - .74 - .10 - .70 -. 41
(0.5,0.1)
Weibull GPD 500 .161 .099 .127 -1.11 - .33 - .14 -. 08
(0.5,0.1)
Weibull GEV 100 -. 072 -. 055 -.057 - .17 - .13 .22 .11

(1.5,1.0)
Weibull GPD 100 -.072 -.043 -.053 .07 .00 .18 .10
(1.5,1.0)
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